Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 409
Consideremos un polígono convexo de área $A$ y perímetro $P$. Demostrar que existe un círculo de radio $A/P$ contenido en el interior del polígono.
pistasolución 1info
Pista. Demuestra que existen puntos interiores al polígono a distancia $A/P$ de cualquiera de sus lados.
Solución. En cada lado del polígono dibujamos un rectángulo con base dicho lado y altura $A/P$ hacia el interior del polígono. La suma de las áreas de todos los rectángulos será igual a $P\cdot(A/P)=A$, pero el área total que cubren es menor que $A$ dado que los rectángulos se superponen unos con otros cerca de los vértices del polígono. En otras palabras, los rectángulos no cubren todo el polígono, luego existirá un punto $p$ del interior del polígono no cubierto por ningún rectángulo. La distancia de $p$ a cualquiera de los lados es mayor que $A/P$ por no pertenecer a ningún rectángulo, luego el círculo de radio $A/P$ centrado en $p$ está contenido en el interior del polígono.

Nota. ¿Qué podría fallar en este argumento si el polígono no es convexo?

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre