Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 423
Si $x$ e $y$ son números reales distintos y distintos de $1$ y además \[\frac{yz-x^2}{1-x}=\frac{xz-y^2}{1-y},\] demostrar que ambas fracciones son iguales a $x+y+z$.
pistasolución 1info
Pista. Resta $x+y+z$ de ambas fracciones y opera.
Solución. Restando $x+y+z$ de ambas fracciones, obtenemos la igualdad \begin{eqnarray*} \frac{yz-x^2}{1-x}-(x+y+z)&=&\frac{yz-x^2-(1-x)(x+y+z)}{1-x}=\frac{yz+xz+xy-x-y-z}{1-x},\\ \frac{xz-y^2}{1-y}-(x+y+z)&=&\frac{xz-y^2-(1-y)(x+y+z)}{1-y}=\frac{yz+xz+xy-x-y-z}{1-y}.\\ \end{eqnarray*} Como estas fracciones han de ser iguales pero los denominadores son distintos (y distintos de cero), el numerador común debe ser cero, luego las fracciones iniciales eran iguales a $x+y+z$, como queríamos probar.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre