Demostrar que si $-1\lt x\lt 1$ y $-1\lt y\lt 1$, entonces
\[\left|\frac{x-y}{1-xy}\right|\leq\frac{|x|+|y|}{1+|xy|}.\]
pistasolución 1solución 2info
Pista. Distingue casos según los signos de $x$ e $y$.
Solución. La desigualdad no cambia al invertir los papeles de $x$ e $y$, luego podemos suponer que $x\leq y$. Además, si $x$ e $y$ tienen distinto signo, se alcanza la igualdad luego podemos suponer que $x$ e $y$ tienen el mismo signo. Cambiando ambos de signo tampoco se altera la desigualdad, luego podemos suponer que $0\leq y\leq x$. En tal caso, la desigualdad a probar se traduce en
\[\frac{x-y}{1-xy}\leq\frac{x+y}{1+xy}.\]
Esta desigualdad se sigue del siguiente desarrollo:
\[\frac{x-y}{1-xy}-\frac{x+y}{1+xy}=\frac{-2y(1-x^2)}{1-x^2y^2}\leq 0.\]
Nota. De este razonamiento se deduce que la igualdad es cierta cuando $x$ e $y$ tienen distinto signo o bien alguno de los dos es igual a cero.
Solución. Dados $a,b\in\mathbb{R}$, la tangente hiperbólica cumple que
\[\tanh(a\pm b)=\frac{\mathrm{tanh}(a)\pm \mathrm{tanh}(b)}{1\pm \mathrm{tanh}(a)\mathrm{tanh}(b)},\qquad |\mathrm{tanh}(a)|=\mathrm{tanh}|a|.\]
Por tanto, el cambio de variable $x=\mathrm{tanh}(t)$ e $y=\mathrm{tanh}(s)$ transforma la desigualdad del enunciado en
\[\mathrm{tanh}|t-s|\leq\mathrm{tanh}(|t|+|s|).\]
para $t,s\in\mathbb{R}$. Como la tangente hiperbólica es una función creciente, basta comprobar que $|t-s|\leq|t|+|s|$, pero esto es una consecuencia inmediata de la desigualdad triangular.