Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 442
Un octógono tiene todos sus ángulos interiores iguales y las longitudes de sus lados son números enteros. Probar que los lados opuestos son iguales dos a dos.
pistasolución 1info
Pista. Prolonga los lados del octógono para producir rectángulos.
Solución. Llamemos $a_1,\ldots,a_8$ a las longitudes de los ocho lados del octógono, escritos de forma consecutiva. Vamos a demostrar que $a_1=a_5$ puesto que las otras igualdades $a_2=a_6$, $a_3=a_7$ y $a_4=a_8$ se demuestran de forma similar.

Para ello, vamos a tomar las rectas que contienen a los lados impares $a_1,a_3,a_5,a_7$. Como los ángulos interiores son iguales a $45º$, estas rectas son paralelas dos a dos y forman un rectángulo $R$. Además, si a $R$ le quitamos el octógono, quedarán cuatro triángulos rectángulos isósceles de hipotenusas $a_2,a_4,a_6,a_8$, por lo que sus catetos serán $\frac{a_2}{\sqrt{2}},\frac{a_4}{\sqrt{2}},\frac{a_6}{\sqrt{2}},\frac{a_8}{\sqrt{2}}$, respectivamente. Imponiendo ahora que los lados opuestos de $R$ deben tener igual longitud, nos quedan las relaciones \[\frac{a_4+a_6}{2}\sqrt{2}+a_5=\frac{a_8+a_2}{2}\sqrt{2}+a_1,\qquad \frac{a_2+a_4}{2}\sqrt{2}+a_3=\frac{a_6+a_8}{2}\sqrt{2}+a_7.\] Si usamos finalmente que los lados tienen longitudes enteras, entonces los términos que multiplican a $\sqrt{2}$ deben ser iguales (ya que $\sqrt{2}$ es irracional, mientras que el resto de términos son racionales), lo que nos lleva a reformular las igualdades anteriores como \[\frac{a_4+a_6}{2}=\frac{a_8+a_2}{2},\qquad a_5=a_1,\qquad \frac{a_2+a_4}{2}\sqrt{2}=\frac{a_6+a_8}{2},\qquad a_3=a_7,\] probando así la igualdad que queríamos.

Nota. ¿Es cierto el mismo resultado para un hexágono?

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre