Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 457
Se llama parte entera de un número real $a$ al mayor número entero menor o igual que $a$. Si $n$ es un número natural, demostrar que la parte entera de $(4+\sqrt{11})^n$ es un número impar.
pistasolución 1info
Pista. Observa que $(4+\sqrt{11})^n+(4-\sqrt{11})^n$ es un entero par.
Solución. Consideremos el número \[a_n=(4+\sqrt{11})^n+(4-\sqrt{11})^n.\] Desarrollando por el binomio de Newton, tenemos que \[a_n=\sum_{k=0}^n\binom{n}{k}4^{n-k}11^{k/2}(1+(-1)^k),\] luego todos los términos en que $k$ es impar se anulan y el resto queda duplicado. Esto nos dice que $a_n$ es un número par para todo $n\in\mathbb{N}$. Otra forma de ver esto es comprobar que se cumple la relación $a_n=8a_{n-1}+5a_{n-2}$ y, como $a_0=2$ y $a_1=8$ son pares, se sigue que todos los $a_n$ son pares. Ahora bien, se cumple que $4-\sqrt{11}\approx 0.683375$, luego $(4-\sqrt{11})^n$ está entre $0$ y $1$ para todo $n\in\mathbb{N}$. En consecuencia, $(4+\sqrt{11})^n$ es igual al número par $a_n$ menos un número entre $0$ y $1$, luego su parte entera es impar.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre