Demostrar que no existen enteros $a,b,c,d\in\mathbb{Z}$ tales que el polnomio $ax^3+bx ^2+cx+d$ vale $1$ para $x=19$ y vale $2$ para $x=62$.
pistasolución 1info
Pista. Si $r$ y $s$ son números enteros y $p(x)$ es un polinomio con coeficientes enteros, entonces $r-s$ divide a $p(r)-p(s)$.
Solución. Es bien conocido que si $r$ y $s$ son números enteros, entonces $r-s$ divide a $p(r)-p(s)$ (ver la nota). Esto nos dice que, si existe el polinomio propuesto, $62-19=43$ divide a $2-1=1$, lo cual es claramente imposible.
Nota. En realidad, la propiedad propuesta se deduce de que $r-s$ divide a $r^n-s^n$ para todo $n\in\mathbb{N}$, lo cual es a su vez consecuencia de la factorización
\[r^n-s^n=(r-s)(r^{n-1}+r^{n-2}s+r^{n-3}s^2+\ldots+s^{n-1}).\]