| OME Local |
| OME Andaluza |
| OME Nacional |
| OIM |
| IMO |
| EGMO |
| USAMO |
| ASU |
| APMO |
| OMCC |
| Retos UJA |
Nota. Si se alcanza la igualdad, entonces $a^2=b^2=c^2=d^2$, luego $a=b=c=d$ por ser números positivos y, como su producto es $1$, los cuatro números tienen que ser iguales a $1$. Recíprocamente, si los cuatro números son iguales a $1$, la igualdad se alcanza, luego este es la única situación en la que se alcanza.