Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 471
Alrededor de un círculo vamos colocando números de la siguiente manera. En el primer paso, escribimos un 1 en dos puntos diametralmente opuestos; en los pasos siguientes, colocamos entre cada dos números del paso anterior su suma. ¿Cuál es la suma de todos los números en el paso $n$-ésimo?
pistasolución 1info
Pista. ¿Cuánto se añade a la suma en cada paso respecto de lo que había anteriormente?
Solución. Al insertar entre cada dos números su suma, a la suma de todos los números le estamos sumando ambos números. Como cada número del paso $n$ aparece en dos sumas nuevas del paso $n+1$, en total habremos sumado todos los números dos veces. Si llamamos $S_n$ a la suma de los números en el paso $n$, tendremos entonces que $S_{n+1}=S_n+2S_n=3S_n$. Ahora bien, en el paso $1$ tenemos que $S_1=1+1=2$, luego se sigue claramente que $S_{n}=2\cdot 3^{n-1}$.

Nota. En realidad, cambiar la cantidad de números iniciales o sus valores sólo afecta a $S_1$, de forma que la fórmula $S_{n}=3^{n-1}S_1$ es independiente de la configuración inicial.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre