Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 473
Demostrar que una progresión aritmética infinita de números naturales que contiene un cuadrado contiene realmente infinitos cuadrados.
pistasolución 1info
Pista. Demuestra que si $n^2$ es un cuadrado en la progresión, entonces $(n+d)^2 también es un cuadrado en la progresión.
Solución. Supongamos que $n^2$ es un elemento de la sucesión. Llamando $d\in\mathbb{N}$ a su diferencia, todos los términos a partir de $n^2$ serán de la forma $n^2+ad$ con $a\in\mathbb{N}$, por lo que $(n+d)^2=n^2+(2n+d)d$ es otro cuadrado en la sucesión y es mayor que $n^2$. Esto implica claramente que la sucesión contiene infinitos cuadrados.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre