Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 477
Sea $f(x)=(x+b)^2-c$ un polinomio con $b$ y $c$ números enteros.
  1. Si $p$ es un número primo que divide a $c$ y $p^2$ no divide a $c$, demostrar que $p^2$ no divide a $f(n)$ para ningún entero $n\in\mathbb{Z}$.
  2. Sea $q$ un número primo distinto de $2$ que no divide a $c$. Si $q$ divide a $f(n)$ para algún entero $n\in\mathbb{Z}$, demostrar que para cada entero positivo $r$ existe un entero $n'$ tal que $q^r$ divide a $f(n')$.
pistasolución 1info
Pista. Razona el apartado (a) por reducción al absurdo y el apartado (b) por inducción sobre $r$.
Solución. El primer apartado es sencillo razonando por reducción al absurdo. Si existiera un valor de $n\in\mathbb{Z}$ tal que $p^2|f(n)=(n+b)^2-c$, entonces $p|(n+b)^2$ ya que $p|c$ por hipótesis. Como se trata de un cuadrado, necesariamente $p^2|(n+b)^2$, luego también se sigue que $p^2|c=(n+b)^2-f(n)$. Esto contradice la hipótesis de que $p^2$ no divide a $c$.

En cuanto al apartado (b), vamos a proceder por inducción sobre $r$. Para $r=1$, no hay nada que probar ya que tenemos la hipótesis de que $q|f(n)$ para algún $n\in\mathbb Z$. Dado $r\geq 1$, supongamos que $q^r|(n+b)^2-c$ para algún $n\in\mathbb Z$ y probemos que existe $n'\in\mathbb Z$ tal que $q^{r+1}|(n'+b)^2-c$. Vamos a elegir $n'=n+aq^r$ para cierto $a\in\mathbb{Z}$ que vamos a determinar a continuación. Esto nos da \[f(n')=(n+aq^r+b)^2-c=(n+b)^2-c+2aq^r(n+b)+a^2q^{2r}=(d+2a(n+b))q^r+a^2q^{2r},\] donde hemos escrito $(n+b)^2-c=dq^r$ para cierto $d\in\mathbb{Z}$ usando la hipótesis de inducción. Por tanto, habremos terminado si probamos que la ecuación en congruencias $2a(n+b)\equiv -d\ (\text{mod }q)$ tiene solución (siendo $a$ la incógnita). Esto se deduce de que $2(n+b)$ tiene inverso módulo $q$ ya que $\mathrm{mcd}(2(n+b),q)=1$. Esto último se deduce a su vez de que $q$ divide a $f(n)$ pero no a $c$ (luego no $n+b$ no puede ser múltiplo de $q$) y de que $q\neq 2$ por hipótesis.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre