Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 49
Determinar todos los números naturales de cuatro cifras que sean iguales al cubo de la suma de sus cifras.
pistasolución 1info
Pista. Si un número es igual al cubo de la suma de sus cifras, entonces tiene que ser un cubo perfecto, ¿no?
Solución. La forma más sencilla de resolver este problema darse cuenta de que el número en cuestión tiene que ser un cubo perfecto de 4 cifras y, por tanto, tiene que ser el cubo de un número entre 10 y 21. En este punto, podría probarse caso por caso y llegar a la solución, aunque vamos a ver que podemos descartar algunos números directamente.

Es bien sabido que la suma de las cifras tiene el mismo resto que el propio número módulo $9$ luego si llamamos $r$ a dicho resto, ha de cumplirse que $r\equiv r^3\ (\text{mód }9)$, es decir, $r\equiv -1$, $r\equiv 0$ ó $r\equiv 1\ (\text{mód }9)$. Esto nos lleva a que el número es el cubo de 10, 17, 18 ó 19. Probando cada uno de estos cuatro casos llegamos a que los únicos que cumplen la condición son $17^3=4913$ y $18^3=5832$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre