Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 493
Determinar el valor de la siguiente suma: \[\frac{5}{5+25^{1/2009}}+\frac{5}{5+25^{2/2009}}+\ldots+\frac{5}{5+25^{2008/2009}}.\]
pistasolución 1info
Pista. Suma los extremos.
Solución. Supongamos que $a+b=2009$ y calculemos \begin{align*}\frac{5}{5+25^{a/2009}}+\frac{5}{5+25^{b/2009}} &=\frac{5\cdot (5+25^{b/2009})+5\cdot(5+25^{a/2009})}{(5+25^{a/2009})(5+25^{b/2009})}\\ &=\frac{25+5\cdot 25^{b/2009}+25+5\cdot 25^{a/2009}}{25+5(25^{a/2009}+25^{b/2009})+25}=1. \end{align*} De esta manera, podemos agrupar el primer término con el último, el segundo con el penúltimo y así sucesivamente. Como hay $2008$ términos, podemos hacer $1004$ parejas que suman $1$ (sin que sobre ningún término), luego la suma del enunciado es igual a $1004$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre