Sea $ABCDEF$ un hexágono convexo tal que $AB=BC=CD$, $DE=EF=AF$ y $\angle BCD=\angle EFA=\frac{\pi}{3}$. Sean $P$ y $Q$ dos puntos interiores al hexágono de forma que los ángulos $\angle APB$ y $\angle DQE$ valen ambos $\frac{2\pi}{3}$. Demostrar que
\[AP+PB+PQ+DQ+QE\geq CF.\]
pistasolución 1info
Pista. La longitud de una poligonal es siempre mayor o igual que la distancia que une sus extremos por la desigualdad triangular. Intenta relacionar $AP+PB+PQ+DQ+QE$ con la longitud de una poligonal.
Solución. Sean $M$ y $N$ puntos exteriores al hexágono tales que $ABM$ y $DEN$ sean triángulos equiláteros. Entonces, la propiedad de arco capaz nos asegura que $P$ está en la circunferencia circunscrita al triángulo $ABM$ y el teorema de Ptolomeo (aplicado al cuadrilátero $AMBP$) nos dice que $AP+PB=MP$. De la misma forma, obtenemos que $DQ+QE=NQ$ y se cumple que $AP+PB+PQ+DQ+QE=MP+PQ+QN\geq MN$ ya que $MPQN$ es una poligonal que une $M$ y $N$ y su longitud siempre es mayor que la del segmento $MN$. Ahora bien, el octógono $AMBCDNEF$ es simétrico respecto de la recta $BE$ por las condiciones del enunciado luego se tiene que $MN=CF$ y hemos terminado.