OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Como $2^{11}=2048\gt 2023$, se tiene que ninguno de los números se escribe con más de $10$ factores primos (posiblemente repetidos). Vamos a colorear los números con $11$ colores de forma que dos números tienen el mismo número solo si tienen el mismo número de factores primos. Entonces, si $a$ es múltiplo de $b$ distinto de $b$, es porque existe un número $1\lt q\leq 2023$ tal que $a=bq$, luego $a$ y $b$ tienen distinto número de factores $a$ tiene los factores de $b$ más los factores de $q$, luego distinto color.