Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 513
¿Cuáles son los posibles valores de la suma de los dígitos de un cuadrado perfecto?
pistasolución 1info
Pista. Trabaja módulo 9.
Solución. Como la suma de los dígitos de un número es congruente con el número módulo $9$ y todo cuadrado es congruente con $0$, $1$, $4$ o $7$ módulo $9$, deducimos que la suma de los dígitos de un cuadrado deja uno de estos restos al dividirse entre $9$. Vamos a probar que estos son todos los números buscados, es decir, que todo número congruente con $0$, $1$, $4$ o $7$ módulo $9$ es la suma de los dígitos de un cuadrado y habremos terminado.
  • Consideremos los números de la forma $5,35,335,3335,33335,\ldots$ con un cierto número de treses seguidos de un cinco. Sus cuadrados son $25,1225,112225,11115556,\ldots$ cuyas sumas nos dan todos los números de la forma $3k+1$ para $k\geq 2$. Para $k=0$ y $k=1$, tenemos $1^2=1$ con suma $1$ y $2^2=4$ con suma $4$, luego recuperamos así todos los números naturales congruentes con $1$, $4$ y $7$ módulo $9$.
  • Tomemos ahora los números de la forma $6,36,336,3336,33336,\ldots$ en los que hemos sustituido los cincos por seises. Sus cuadrados son $36,1296,112896,11128896,1111288896,\ldots$ cuya suma de dígitos es cualquier múltiplo de $9$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre