Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 514
Si $a$ es un entero impar, demostrar que \[a^4+4a^3+11a^2+6a+2\] es una suma de tres cuadrados y es divisible entre $4$.
pistasolución 1info
Pista. Intenta completar una potencia cuarta de un binomio.
Solución. Intentando completar una potencia cuarta, se llega directamente a que \[a^4+4a^3+11a^2+6a+2=(a+1)^4+5a^2+2a+1=((a+1)^2)^2+(2a)^2+(a+1)^2.\] Para ver que es múltiplo de $4$, observamos que $a^2\equiv a^4\equiv 1\ (\text{mod }4)$ y que $6a\equiv 2\ (\text{mod }4)$ para todo entero impar $a$. Esto nos dice que \[a^4+4a^3+11a^2+6a+2\equiv 1+0+3+2+2\equiv 0\ (\text{mod }4).\]
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre