Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 546
Sea $O$ el circuncentro de un triángulo acutángulo $ABC$ y $A_1$ un punto en el arco menor $BC$ de la circunferencia circunscrita al triángulo $ABC$. Sean $A_2$ y $A_3$ puntos en los lados $AB$ y $AC$, respectivamente, tales que $\angle BA_1A_2=\angle OAC$ y $\angle CA_1A_3=\angle OAB$. Demostrar que la recta $A_2A_3$ pasa por el ortocentro del triángulo $ABC$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre