Dada una circunferencia $\Gamma$, se considera un cuadrilátero $ABCD$ con sus cuatro lados tangentes a $\Gamma$, con $AD$ tangente a $\Gamma$ en $P$ y $CD$ tangente a $\Gamma$ en $Q$. Sean $X$ e $Y$ los puntos donde $BD$ corta a $\Gamma$ y $M$ el punto medio de $XY$. Demostrar que $\angle AMP=\angle CMQ$.