Supongamos que la sucesión \(a_n\) está definida como \(a_1=3\) y \(a_{n+1}=a_n+a_n^2\) para todo natural \(n\). Hallar las dos últimas cifras de \(a_{2000}\).
pistasolución 1info
Pista. Fíjate en que las dos últimas cifras se van repitiendo periódicamente. Calcula unos cuantos términos para ver qué les ocurre.
Solución. Las dos últimas cifras de \(a_n\) sólo dependen de las dos últimas cifras de \(a_{n-1}\), luego bastará calcular algunos términos hasta que se repitan las dos últimas cifras. En realidad, esto podría ser un proceso muy largo, pero da la casualidad de que obtenemos la siguiente sucesión de últimas cifras:
\[03\to 12\to 56\to 92\to 56\to 92\to 56\to 92\to\ldots\]
De esta forma, salvo los dos primeros, vemos que los siguientes se repiten por parejas. En particular, las dos últimas cifras de \(a_{2000}\) son las mismas que las de \(a_4\), luego la respuesta a la pregunta es \(92\).