Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 603
Sea $ABC$ un triángulo con $AB\lt AC$ y sea $\Gamma$ su circunferencia circunscrita. Sean $D$, $E$ y $F$ los puntos de tangencia de la circunferencia inscrita de $ABC$ con $BC$, $CA$ y $AB$, respectivamente. Sea $R$ el punto de $EF$ tal que $DR$ es una altura del triángulo $DEF$ y sea $S$ el punto de corte de la bisectriz exterior del ángulo $BAC$ con $\Gamma$. Probar que $AR$ y $SD$ se cortan sobre $\Gamma$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre