Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 612
Sea $ABC$ un triángulo acutángulo y escaleno. Sean $H$ su ortocentro y $O$ su circuncentro, y sea $P$ un punto interior del segmento $HO$. La circunferencia de centro $P$ y radio $PA$ corta nuevamente a las rectas $AB$ y $AC$ en los puntos $R$ y $S$, respectivamente. Denotamos por $Q$ el punto simétrico de $P$ con respecto a la mediatriz de $BC$. Demostrar que los puntos $P$, $Q$, $R$ y $S$ pertenecen a una misma circunferencia.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre