Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 614
Sea $ABC$ un triángulo acutángulo con $AC\gt AB$ y sea $\Gamma$ su circunferencia circunscrita. Sean $E$ y $F$ los puntos medios de los lados $AC$ y $AB$, respectivamente. La circunferencia circunscrita de $CEF$ y $\Gamma$ se cortan en $X$ y $C$, con $X\neq C$. La recta $BX$ y la tangente a $\Gamma$ por $A$ se cortan en $Y$. Sea $P$ el punto en el segmento $AB$ tal que $YP = YA$, con $P\neq A$, y sea $Q$ el punto donde se cortan $AB$ y la paralela a $BC$ que pasa por $Y$. Demostrar que $F$ es el punto medio de $PQ$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre