Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 615
Sea $a_1,a_2,a_3,\ldots$ una sucesión de enteros positivos y sea $b_1,b_2,b_3,\ldots$ la sucesión de números reales dada por \[b_n = \frac{a_1a_2\cdots a_n}{a_1+a_2+\ldots+a_n}, \text{para todo }n\geq 1\] Demostrar que, si entre cada millón de términos consecutivos de la sucesión $b_1,b_2,b_3,\ldots$ existe al menos uno que es entero, entonces existe algún $k$ tal que $b_k\gt 2021^{2021}$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre