Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 616
Sean $a,b,c,x,y,z\in\mathbb{R}$ números reales tales que \[a^2+x^2=b^2+y^2=c^2+z^2=(a+b)^2+(x+y)^2=(b+c)^2+(y+z)^2=(c+a)^2+(z+x)^2.\] Demostrar que $a^2+b^2+c^2=x^2+y^2+z^2$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre