Sea $ABC$ un triángulo acutángulo con circunferencia circunscrita $\Gamma$. Sean $P$ y $Q$ puntos en el semiplano definido por $BC$ que contiene a $A$, tales que $BP$ y $CQ$ son tangentes a $\Gamma$ con $PB = BC = CQ$. Sean $K$ y $L$ puntos distintos de $A$ en la bisectriz externa del ángulo $\angle CAB$, tales que $BK = BA$ y $CL = CA$. Sea $M$ el punto de corte de las rectas $PK$ y $QL$. Demostrar que $MK = ML$.