Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 629
Una sucesión $P_1,P_2,\ldots,P_n$ de puntos en el plano (no necesariamente distintos) es carioca si existe una permutación $a_1,a_2,\ldots,a_n$ de los números $1,2,\ldots,n$ para la que los segmentos \[P_{a_1}P_{a_2},\quad P_{a_2}P_{a_3}, \ldots\quad P_{a_n}P_{a_1}\] son todos de la misma longitud. Determinar el mayor número $k$ tal que para cualquier sucesión de $k$ puntos en el plano, se pueden añadir $2023-k$ puntos de modo que la sucesión de $2023$ puntos es carioca.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre