OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
La región rotada $A'\cup B'$ tiene área $2$ y está delimitada por $r'$, mientras que $B\cup C$ está delimitada por $s$ paralela a $r'$ y también tiene área $2$. Para que esto ocurra, debe ser necesariamente $r'=s$ (en caso contrario, $A'\cup B'$ estaría estrictamente contenida en $B\cup C$ o viceversa, luego no podrían tener la misma área). Por un argumento similar, la región $B'$ debe coincidir con $C$ para que ambas tengan área $1$ (si no, $B'$ estaría estrictamente contenida en $C$ o viceversa). Por lo tanto, el punto de intersección de $r$ y $s$ debe ser el centro de rotación $O$. Tenemos así que $A,B,C,D$ son congruentes mediante rotaciones respecto de $O$ y tienen todas área $1$.