Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 662
Sea $f:[0,1]\to\mathbb{R}$ una función creciente tal que
  • $f(0)=0$,
  • $f(\frac{x}{3})=\frac{f(x)}{2}$,
  • $f(1-x)=1-f(x)$,
para todo $x\in[0,1]$. Hallar el valor de $f(\frac{18}{1991})$.
pistasolución 1info
Pista. Demuestra que $f(x)$ es constante en el intervalo $[\frac{1}{3},\frac{2}{3}]$ y luego ve transformando $\frac{18}{1991}$ mediante las operaciones dadas en el enunciado para llevarlo a este intervalo.
Solución. Comenzamos observando que $f(1)=1-f(0)=1$, $f(\frac{1}{3})=\frac{f(1)}{2}=\frac{1}{2}$ y $f(\frac{2}{3})=1-f(\frac{1}{3})=\frac{1}{2}$. Como $f$ es creciente, deducimos que $f(x)$ es constante $\frac{1}{2}$ en el intervalo $[\frac{1}{3},\frac{2}{3}]$. El problema se resolverá si logramos hacer transformaciones para llevar $\frac{18}{1991}$ a este intervalo.

Multiplicamos el numerador por la mayor potencia de $3$ posible para no salirnos del intervalo $[0,1]$ y obtenemos usando la segunda regla que \[f\left(\frac{18}{1991}\right)=\frac{1}{2^4}\cdot f\left(\frac{18\cdot 3^4}{1991}\right)=\frac{1}{16}\cdot f\left(\frac{1458}{1991}\right).\] Como $\frac{1458}{1991}\not\in[\frac{1}{3},\frac{2}{3}]$, tomamos el número complementario para aplicar la tercera regla: \[f\left(\frac{1458}{1991}\right)=1-f\left(1-\frac{1458}{1991}\right)=1-f\left(\frac{533}{1991}\right).\] Volvemos a multiplicar por la mayor potencia de $3$: \[f\left(\frac{533}{1991}\right)=\frac{1}{2}\cdot f\left(\frac{3\cdot 533}{1991}\right)=\frac{1}{2}\cdot f\left(\frac{1599}{1991}\right).\] Como $\frac{1599}{1991}\not\in[\frac{1}{3},\frac{2}{3}]$, repetimos de nuevo el proceso: \[f\left(\frac{1599}{1991}\right)=1-f\left(1-\frac{1599}{1991}\right)=1-f\left(\frac{392}{1991}\right)=1-\frac{1}{2}\cdot f\left(\frac{1176}{1991}\right)=\frac{3}{4},\] ya que (ahora sí) $\frac{1176}{1991}\in[\frac{1}{3},\frac{2}{3}]$. Podemos entonces volver atrás y calcular $f(\frac{533}{1991})=\frac{3}{8}$ y $f(\frac{1458}{1991})=\frac{5}{8}$ y finalmente deducimos que \[f\left(\frac{18}{1991}\right)=\frac{5}{128}.\]

Nota. La función $f$ es la que se conoce como función escalera de Cantor. Una forma de calcular $f(x)$ es expresar $x$ como número decimal en base $3$ hasta llegar al primer decimal igual a $1$, cambiarlo por un $2$ y eliminar todos los que están a su derecha. Ahora todos los decimales son $0$ o $2$, cambiamos los ceros por unos y leemos el número en base $2$.

El procedimiento que se sigue en la solución de multiplicar por la mayor potencia de $3$ sin salirnos del intervalo y luego tomar complementarios, puede probarse que nos lleva a la solución siempre que acabe apareciendo un $1$ en la representación en base $3$ y hace que para tales números $x$, el valor de $f(x)$ sea racional. Los números para los que esto no se aplica son los que se escriben únicamente con $0$ y $2$ en base $3$, números que forman (una homotecia de razón $2$) del conjunto de Cantor (que son los números $x\in[0,1]$ que se escriben únicamente con $0$ y $1$ en base $3$).

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre