Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 670
Sean $P$ y $Q$ dos puntos distintos en el plano. Denotaremos por $m(PQ)$ la mediatriz del segmento $PQ$. Sea $S$ un subconjunto finito del plano, con más de un elemento, que satisface las siguientes propiedades:
  • Si $P$ y $Q$ están en $S$, entonces $m(PQ)$ corta a $S$.
  • Si $P_1Q_1$, $P_2Q_2$ y $P_3Q_3$ son tres segmentos diferentes cuyos extremos son puntos de $S$, entonces no existe ningún punto de $S$ en la intersección de $m(P_1Q_1)$, $m(P_2Q_2)$ y $m(P_3Q_3)$.
Determinar el número de puntos que puede tener $S$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre