Un cristalero dispone de una pieza de vidrio de forma triangular. Usando sus conocimientos de geometría, sabe que podría cortar de ella un círculo de radio $r$. Demuestra que, para cualquier número natural $n$, de la pieza triangular puede obtener $n^2$ círculos de radio $\frac{r}{n}$ (suponiendo que se puedan hacer siempre los cortes perfectos).
pistasolución 1info
Pista. Subdivide el triángulo en $n^2$ triángulos iguales entre sí y semejantes al primero. Ahora repite la operación del cristalero en cada uno de los $n^2$ triángulos (a escala).
Solución. Subdividimos cada lado en $n$ segmentos iguales y los unimos mediante paralelas a los lados, como se muestra en la figura para $n=4$. Este proceso descompone el triángulo original en $n^2$ triángulos congruentes y semejantes al original con razón de semejanza $\frac{1}{n}$. En tal caso, puede repetir el corte que ha hecho sobre el triángulo grande a escala $\frac{1}{n}$ en cada triángulo pequeño; en particular, puede trazar círculos de radio $\frac{r}{n}$ si en el triángulo grande ha podido trazar círculos de radio $r$.
