OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Haciendo el cambio $n\mapsto f(n)$ en la segunda condición, tenemos que \[f(n+1)=f(f(f(n))+1)=\begin{cases}f(n)+1&\text{si }n\text{ es par},\\f(n)+3&\text{si }n\text{ es impar}.\end{cases}\] De esta forma, los valores de $f(n)$ decrecen 1 y aumentan 3 cíclicamente cuando $n$ se incrementa en una unidad. Por tanto, cuando $n$ avanza 2 unidades, $f(n)$ también se incrementa también en 2 unidades, independientemente de que $n$ sea par o impar. De esta forma, llegamos a que $f(2k+2)=2k+f(2),\qquad f(2k+1)=2k+f(1)$. Como quiera que $f(1)=2$ y $f(2)=f(f(1))=1$, tenemos que $f$ disminuye en una unidad los números pares y aumenta en una unidad a los impares, es decir, la única posible función que cumple las condiciones del enunciado es \[f(n)=\begin{cases}n-1&\text{si }n\text{ es par},\\n+1&\text{si }n\text{ es impar}.\end{cases}\] Es fácil comprobar que de verdad esta función cumple las condiciones.
Nota. En realidad, este problema nos obliga a usar la pista ya que nos dice observando previamente que... Aun así, es esperable que si alguien encuentra otra forma de resolverlo sin usar la pista, debería otorgarse la puntuación completa.