OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Nota. Es interesante preguntarse si realmente es que no se pueden calcular todas las soluciones, pero no es así. Si obviamos las soluciones $(2,2)$ y $(3,3)$ obtenidas, podemos sumar y restar las dos ecuaciones dadas para obtener el sistema cuadrático siguiente (tras simplificar el factor $x-y$ que aparece en la diferencia): \[\left\{\begin{array}{l} 2xy-x-y=7\\ x^2+y^2-5x-5y=-12 \end{array}\right.\] Despejando $x=\frac{7+y}{2y-1}$ en la primera ecuación y sustituyendo en la segunda, obtenemos la ecuación cuadrática $y^4-6 y^3+15 y^2-26 y+24=0$, cuyas únicas soluciones reales son $y=2$ e $y=3$ (se obtienen por Ruffini). Por tanto, el sistema del enunciado tiene cuatro soluciones: $(2,2)$, $(3,3)$, $(2,3)$ y $(3,2)$.