Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 699
Consideremos los polinomios $P(x)=x^3+ax^2+bx+c$ y $Q(x)=x^3+Ax^2+Bx+C$ con coeficientes reales. Si $P(x)$ tiene sus tres raíces positivas y las raíces de $Q(x)$ son los inversos de las raíces de $P(x)$, demostrar que $aA\geq 9$ y $bB\geq 9$.
pistasolución 1info
Pista. Expresa las relaciones de Cardano-Vieta para ambos polinomios.
Solución. Llamemos $\alpha,\beta,\gamma$ a las raíces de $P(x)$, con lo que las raíces de $Q(x)$ son $\frac{1}{\alpha},\frac{1}{\beta},\frac{1}{\gamma}$. Desarrollando e igualando coeficientes en las identidades \begin{align*} P(x)&=(x-\alpha)(x-\beta)(x-\gamma)=x^3+ax^2+bx+c,\\ Q(x)&=(x-\frac{1}{\alpha})(x-\frac{1}{\beta})(x-\frac{1}{\gamma})=x^3+Ax^2+Bx+C, \end{align*} obtenemos las relaciones de Cardano-Vieta para ambos polinomios: \begin{align*} a&=-\alpha-\beta-\gamma&A&=-\frac{1}{\alpha}-\frac{1}{\beta}-\frac{1}{\gamma},\\ b&=\alpha\beta+\beta\gamma+\gamma\alpha&B&=\frac{1}{\alpha\beta}+\frac{1}{\beta\gamma}+\frac{1}{\gamma\alpha}. \end{align*} Ahora utilizamos la desigualdad entre las medias aritmética y armónica y el hecho de que $\alpha,\beta,\gamma\gt 0$ para estimar: \begin{align*} \frac{3}{-A}&=\frac{3}{\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}}\leq\frac{\alpha+\beta+\gamma}{3}=\frac{-a}{3},\\ \frac{3}{B}&=\frac{3}{\frac{1}{\alpha\beta}+\frac{1}{\beta\gamma}+\frac{1}{\gamma\alpha}}\leq\frac{\alpha\beta+\beta\gamma+\gamma\alpha}{3}=\frac{b}{3}. \end{align*} De aquí se obtienen las desigualdades $aA\geq 9$ y $b\beta\geq 9$ (teniendo en cuenta que $-A\geq 0$ y $B\geq 0$).

Nota. La primera igualdad se alcanza cuando $\alpha=\beta=\gamma$, es decir, cuando los polinomios son cubos perfectos con raíces inversas, esto es, \[P(x)=x^3-3rx^2+3r^2x-r^3,\qquad Q(x)=x^3-\tfrac{3}{r}x^2+\tfrac{3}{r^2}x-\frac{1}{r^3},\] para cierto $r\gt 0$. La segunda igualdad se alcanza cuando $\alpha\beta=\beta\gamma=\gamma\alpha$, que claramente equivale a $\alpha=\beta=\gamma$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre