Solución. Pongamos que los lados miden $n-1$, $n$ y $n+1$ y que el ángulo menor es $\alpha$ y el mayor $2\alpha$. Esto nos dice que $2\alpha$ es el ángulo opuesto a $n+1$ y $\alpha$ el opuesto a $n-1$ ya que los ángulos guardan el mismo orden que sus lados opuestos. Por tanto, el teorema del seno nos dice que
\[\frac{\mathrm{sen}(\alpha)}{n-1}=\frac{\mathrm{sen}(2\alpha)}{n+1}=\frac{2\mathrm{sen}(\alpha)\cos(\alpha)}{n+1}\ \Longrightarrow\ \cos(\alpha)=\frac{n+1}{2(n-1)}.\]
Ahora bien, el teorema del coseno aplicado al lado de longitud $n-1$ nos dice que
\[(n-1)^2=n^2+(n+1)^2-2n(n+1)\cos(\alpha)=2n^2+2n+1-\frac{n(n+1)^2}{n-1}.\]
Operando y simplificando, la ecuación anterior equivale a $n(n-5)=0$, lo que nos da como única posibilidad $n=5$ (el triángulo de lados $4$, $5$ y $6$).
Resta por ver si este triángulo cumple la propiedad. De nuevo por el teorema del coseno, tenemos que el ángulo $\alpha$ opuesto al lado de longitud $4$ cumple
\[\cos(\alpha)=\frac{5^2+6^2-4^2}{2\cdot 5\cdot 6}=\frac{3}{4}.\]
Por su parte, el ángulo $\beta$ opuesto al lado de longitud $6$ cumple
\[\cos(\beta)=\frac{4^2+5^2-6^2}{2\cdot 4\cdot 5}=\frac{1}{8}=2\cos^2(\alpha)-1=\cos(2\alpha).\]
Deducimos que $\beta=2\alpha$, luego en este triángulo el ángulo mayor es el doble del menor y respondemos así afirmativamente a la pregunta del enunciado.