En un triángulo acutángulo $ABC$, sean $AE$ y $BF$ dos alturas y sea $H$ el ortocentro. La recta simétrica de $AE$ respecto de la bisectriz interior del ángulo $A$ y la recta simétrica de $BF$ respecto de la bisectriz interior del ángulo $B$ se cortan en un punto $O$. Las rectas $AE$ y $AO$ cortan por segunda vez a la circunferencia circunscrita al triángulo $ABC$ en los puntos $M$ y $N$, respectivamente. Sea $P$ la intersección de $BC$ con $HN$, $R$ la intersección de $BC$ con $OM$ y $S$ la intersección de $HR$ con $OP$. Demostrar que $AHSO$ es un paralelogramo.