Sea $OXYZ$ un triedro trirrectángulo de vértice $O$. Sobre la arista $OZ$ se toma un punto fijo $C$ tal que $OC = c$. Sobre $OX$ y $OY$ se toman respectivamente dos puntos variables $P$ y $Q$ de modo que la suma $OP+OQ$ sea una constante dada $k$. Para cada par de puntos $P$ y $Q$, los cuatro puntos $O$, $C$, $P$ y $Q$ están en una esfera, cuyo centro $W$ se proyecta sobre el plano $OXY$. Determinar los lugares geométricos del punto $W$ y de su proyección al variar $P$ y $Q$.
Solución. Vamos a considerar las coordenadas usuales $(x,y,z)$, de forma que $O=(0,0,0)$, $P=(a,0,0)$, $Q=(0,b,0)$ y $C=(0,0,c)$, con la restricción que nos dan $a+b=k$ constante. La esfera que pasa por los cuatro puntos contiene a los triángulos rectángulos $OPQ$, $OPC$ y $OCQ$, contenidos en los planos coordenados. En particular, sus hipotenusas $PC$, $CQ$ y $QP$ son diámetros de las tres circunferencias que surgen de intersecar la esfera con los planos coordenados, luego el centro de la esfera se tiene que proyectar sobre los puntos medios de estos segmentos. Tenemos así que $W=(\frac{a}{2},\frac{b}{2},\frac{c}{2})$ (es fácil además comprobar que este punto equidista de $O,P,Q,C$). La proyección de $W$ sobre el plano $OXY$ no es más que quedarnos con sus dos primeras coordenadas, es decir, se trata del punto $W'=(\frac{a}{2},\frac{b}{2},0)$. Como $a+b=k$ y $a,b,c$ son reales positivos arbitrarios, la respuesta es muy sencilla:
- El lugar geométrico de $W$ es el conjunto de ecuación $x+y=\frac{k}{2}$ con $x,y,z\gt 0$, es decir, la intersección del plano $x+y=2k$ con el primer cuadrante.
- El lugar geométrico de $W$ es el conjunto de ecuación $x+y=\frac{k}{2}$ y $z=0$ con $x,y\gt 0$, es decir, el segmento de recta que une los puntos $(\frac{k}{2},0,0)$ y $(0,\frac{k}{2},0)$ en el plano $OXY$.