Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 736
Una oficina de turismo va a realizar una encuesta sobre número de días soleados y número de días lluviosos que se dan en el año. Para ello recurre a seis regiones que le transmiten los datos de la siguiente tabla:
RegiónSoleados o lluviososInclasificables
A 336 29
B 321 44
C 335 30
D 343 22
E 329 36
F 330 35
La persona encargada tiene los datos de días lluviosos y de días soleados en cada región por separado (en la tabla aparecen juntos). Se da cuenta de que, prescindiendo de una de las regiones, la observación da un número de días lluviosos es la tercera parte del de días soleados. Razonar cuál es dicha región.
pistasolución 1info
Pista. Al quitar la región debe quedar un número de días múltiplo de cuatro, de forma que puedan dividirse de forma exacta en proporción 3 a 1.
Solución. Al quitar la región debe quedar un número de días múltiplo de cuatro, de forma que puedan dividirse de forma exacta en proporción 3 a 1. Comprobamos fácilmente (solo hay que mirar las dos últimas cifras) que \begin{align*} 336&\equiv 0\ (\text{mod }4),& 321&\equiv 1\ (\text{mod }4),& 335&\equiv 3\ (\text{mod }4),\\ 343&\equiv 3\ (\text{mod }4),& 329&\equiv 1\ (\text{mod }4),& 330&\equiv 2\ (\text{mod }4). \end{align*} La única forma de quitar uno de los días y que quede múltiplo de cuatro es quitar la región F, lo que nos da la respuesta al problema.

Nota. En realidad, el argumento no prueba que el número de días lluviosos es la tercera parte del de soleados, sino que se basa en que la persona encargada sabe que esto ocurre para alguna región. Hemos visto que solo puede ser la F.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre