Solución. Llamemos $S_1$, $S_2$, $S_3$, $S_4$ a las áreas de los triángulos $CGQ$, $AGQ$, $BGP$ y $AGP$, respectivamente, que se encuentran coloreadas en la figura. Como $CGQ$ y $AGQ$ tienen una altura común y también la tienen $BGP$ y $AGP$ (estas alturas comunes están dibujadas en línea discontinua azul), tenemos que
\[\frac{PB}{PA}\cdot\frac{QC}{QA}=\frac{S_4}{S_3}\cdot\frac{S_1}{S_2}.\]
Ahora vamos a calcular estas áreas de otra forma, para lo que trazamos las alturas $AA'$, $BB'$ y $CC'$, siendo $A',B',C'$ puntos de la recta que pasa por $G$. Tenemos entonces que
\[\frac{S_4}{S_3}\cdot\frac{S_1}{S_2}=\frac{BB'\cdot CC'}{(AA')^2}.\]
Ahora bien, como $M$ es el punto medio de $BC$, la altura $MM'$ del triángulo $MPQ$ (en gris discontinuo) cumple que $MM'=\frac{1}{2}(BB'+CC')$. El área de $PMQ$ es $\frac{1}{2}MM'\cdot PQ$ y el área de $APQ$ es $\frac{1}{2}PQ\cdot AA'$. Como el área de $APQ$ es el doble que la de $PMQ$ (ya que el baricentro divide a la mediana en dos segmentos tales que $AG=2GM$), tenemos que $\frac{1}{2}(BB'+CC')=MM'=\frac{1}{2}AA'$, de donde $AA'=BB'+CC'$. Finalmente, esto nos dice que
\[\frac{PB}{PA}\cdot\frac{QC}{QA}=\frac{BB'\cdot CC'}{(AA')^2}=\frac{BB'\cdot CC'}{(BB'+CC')^2}=\frac{1}{2+\frac{BB'}{CC'}+\frac{CC'}{BB'}}\leq\frac{1}{4},\]
donde hemos usado que la suma de un número positivo y su inverso es mayor o igual que $2$.
