Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 753
Sean $A$ y $B$ puntos del plano y $C$ un punto de la mediatriz de $AB$. Se construye una sucesión de puntos $\{C_1,C_2,\ldots,C_n,\ldots\}$ como $C_1 = C$ y, para $n\geq 1$, si $C_n$ no pertenece al segmento $AB$, $C_{n+1}$ es el circuncentro del triángulo $ABC_n$. Determinar todos los puntos $C$ tales que la sucesión está definida para todo $n$ y es periódica a partir de un cierto punto.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre