| OME Local |
| OME Andaluza |
| OME Nacional |
| OIM |
| IMO |
| EGMO |
| USAMO |
| ASU |
| APMO |
| OMCC |
| Retos UJA |
Tenemos así que $OBC$ tiene ángulos $2A$, $\frac{B}{2}$ y $\frac{C}{4}$. Este triángulo es isósceles dado que $OB=OC$ (son el radio de la circunferencia circunscrita), luego $\frac{C}{4}=\frac{B}{2}$. Nos quedan por tanto, tres ecuaciones sobre las incógnitas $A,B,C$, que forman el sistema lineal: \[\left\{\begin{array}{c} A+B+C=180\\ 2A+\frac{B}{2}+\frac{C}{4}=180\\ \frac{C}{4}=\frac{B}{2} \end{array}\right.\] Se resuelve fácilmente, dando solución única $A=C=72^\circ$ y $B=36^\circ$.
