OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Sea $X$ el punto de la recta $AC$ tal que $H$ es el punto medio de $AX$, luego el triángulo $ABX$ es equilátero. Por un lado, como $MH$ y $BX$ son paralelas, ya que $M$ y $H$ son los puntos medios de los lados $AB$ y $AX$, el triángulo $AMH$ es equilátero y se tiene que $\angle MHB=90^\circ-\angle AHM=30^\circ$. Por otro lado, $\angle BMH=30^\circ$ ya que $XM$ es bisectriz en el triángulo equilátero $ABX$. La propiedad del arco capaz nos dice ahora que el cuadrilátero $BMHX$ tiene circunferencia circunscrita (los puntos desde los que $BM$ se ve con un ángulo de $30^\circ$) y que el punto $C$ tiene que estar sobre dicha circunferencia. Como la intersección de la circunferencia con la recta $AC$ son los puntos $H$ y $X$, la propiedad deseada se cumple si, y sólo si, $C=H$ o bien $C=X$. Tenemos así dos casos: