OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Para calcular $\alpha$, podemos suponer que $T$ tiene lado $1$. Seccionando $T$ por un plano que contiene a una de sus aristas y al punto medio de la arista opuesta. El triángulo en la intersección es isósceles y tiene un lado de longitud $1$, la arista de $T$, y los otros dos de longitud $\frac{\sqrt{3}}{2}$, la altura de una de las caras de $T$. El ángulo que buscamos es el que forman estos dos lados iguales, que puede calcularse como \[\alpha=2\,\mathrm{arcsen}\left(\frac{1/2}{\sqrt{3}/2}\right)=2\,\mathrm{arcsen}\left(\frac{1}{\sqrt{3}}\right)\gt 2\,\mathrm{arcsen}\left(\frac{1}{2}\right)=60^\circ.\] Además, está claro que $\alpha\lt 90^\circ$, por lo que no pueden completarse $90^\circ$ sumando un cierto número entero de ángulos iguales a $\alpha$.