Dos circunferencias secantes $C_1$ y $C_2$ de radios $r_1$ y $r_2$ se cortan en los puntos $A$ y $B$. Por $B$ se traza una recta variable que corta de nuevo a $C_1$ y $C_2$ en dos puntos que llamaremos $P_r$ y $Q_r$, respectivamente. Demostrar que existe un punto $M$ que depende solo de $C_1$ y $C_2$ tal que la mediatriz del segmento $P_rQ_r$ pasa por $M$.