Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 826
Dada una semicircunferencia de diámetro $AB=2R$, se considera una cuerda $CD$ de longitud fija $c$. Sea $E$ la intersección de $AC$ con $BD$ y $F$ la intersección de $AD$ con $BC$. Probar que el segmento $EF$ tiene longitud constante y dirección constante al variar la cuerda $CD$ sobre la semicircunferencia.
pistasolución 1info
Pista. Demuestra que $E$ y $F$ se mueven sobre arcos de circunferencia que unen $A$ y $B$ al variar $CD$ sin cambiar su longitud.
Solución. Vamos a suponer que los puntos de la circunferencia están dispuestos consecutivamente en el orden $A,C,D,B$, como se ve en la figura, de forma que $E$ es exterior y $F$ es interior al semicírculo.

Es muy fácil darse cuenta de la recta $EF$ ha de ser perpendicular a $AB$: dado que los ángulos $\angle ACB$ y $\angle ADB$ son rectos por comprender al diámetro $AB$ en la semicircunferencia, se tiene que $AD$ y $BC$ son alturas del triángulo $AEB$, luego $F$ es su ortocentro y $EF$ es la tercera altura, que debe ser perpendicular al lado $AB$. Tenemos así que la dirección del segmento $EF$ no varía.

Veamos ahora que su longitud tampoco varía. Por la propiedad del arco capaz, el ángulo $\alpha=\angle CAD=\angle CBD$ sólo depende de $c$, no de la posición concreta de la cuerda $CD$. Como los ángulos $\angle ACB$ y $\angle ADB$ son rectos por comprender al diámetro $AB$ en la semicircunferencia, deducimos que $\angle AEB=90-\alpha$. Además, como la suma de los ángulos del cuadrilátero $ECFD$ es $360$, tenemos también que $\angle AFB=\angle CFD=90+\alpha$. Todo ello nos dice que los puntos $E$ y $F$ se mueven en sendos arcos de circunferencia con extremos $A$ y $B$ (al variar la cuerda $CD$ sin modificar su longitud), como puede verse en la figura. Además, como los ángulos con los que $E$ y $F$ ven al segmento $AB$ son $90-\alpha$ y $90+\alpha$, que suman $180$, estas circunferencias son simétricas respecto de $AB$. En particular, tienen el mismo radio y, al pasar por $A$ y $B$, tiene que ser una trasladada de la otra en la dirección perpendicular a $AB$. De esta forma, la longitud del segmento $EF$ es la del vector de traslación, o sea, constante.

imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre