Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 827
Sea $P$ un conjunto de puntos en el plano tales que por cada cuatro puntos de $P$ pasa una circunferencia. ¿Se puede afirmar que necesariamente todos los puntos de $P$ están en la misma circunferencia? Justificar la respuesta.
pistasolución 1info
Pista. Por tres puntos del plano (que no estén alineados) pasa una única circunferencia.
Solución. Supondremos que $P$ contiene al menos cuatro puntos, que no pueden estar alineados ya que por ellos pasa una circunferencia. Elegimos tres puntos distintos $p_1,p_2,p_3\in P$ y tomamos la única circunferencia $\Gamma$ que pasa por ellos. Dado $p\in P$ distinto de $p_1,p_2,p_3$, el enunciado nos dice que hay una circunferencia que pasa por $p_1,p_2,p_3$ y $p$, luego no puede ser otra que $\Gamma$ ya que por $p_1,p_2,p_3$ pasa una única circunferencia. Deducimos así que $\Gamma$ contiene a todos los puntos de $P$ y la respuesta es afirmativa.

Nota. En realidad, es necesario que el enunciado diga que $P$ tiene al menos cuatro puntos o que los puntos de $P$ no están alineados. Por ejemplo, un conjunto $P$ formado por tres puntos alineados cumple la condición pero no todos los puntos de $P$ están en una circunferencia.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre