Solución. Supondremos que $P$ contiene al menos cuatro puntos, que no pueden estar alineados ya que por ellos pasa una circunferencia. Elegimos tres puntos distintos $p_1,p_2,p_3\in P$ y tomamos la única circunferencia $\Gamma$ que pasa por ellos. Dado $p\in P$ distinto de $p_1,p_2,p_3$, el enunciado nos dice que hay una circunferencia que pasa por $p_1,p_2,p_3$ y $p$, luego no puede ser otra que $\Gamma$ ya que por $p_1,p_2,p_3$ pasa una única circunferencia. Deducimos así que $\Gamma$ contiene a todos los puntos de $P$ y la respuesta es afirmativa.
Nota. En realidad, es necesario que el enunciado diga que $P$ tiene al menos cuatro puntos o que los puntos de $P$ no están alineados. Por ejemplo, un conjunto $P$ formado por tres puntos alineados cumple la condición pero no todos los puntos de $P$ están en una circunferencia.