Solución. Si llamamos $y=\frac{6-x}{x+1}$, podemos despejar
\[y=\frac{6-x}{x+1}\ \Longleftrightarrow \ xy=6-(x+y).\]
Además, la ecuación inicial se escribe como $xy(x+y)=8$, por lo que si llamamos $s$ y $p$ a la suma y producto de las dos incógnitas, tenemos que $p=6-s$ y $sp=8$. Sustituyendo la primera en la segunda ecuación llegamos a que $s(6-s)=8$ o equivalentemente $s^2-6s+8=0$, que tiene soluciones $s=2$ y $s=4$. Distinguimos los dos casos:
- Si $s=2$, entonces $p=6-s=4$. Tenemos así que $x+y=2$ y $xy=4$, luego $x$ e $y$ son las soluciones de la ecuación $t^2-2t+4=0$. Esta ecuación no tiene raíces reales.
- Si $s=4$, entonces $p=6-s=2$, luego $x+y=4$ y $xy=2$. Por tanto, $x$ e $y$ son las soluciones de la ecuación $t^2-4t+2=0$. Esto nos da dos posibles valores de $x$, que son $x=2\pm\sqrt{2}$ y se comprueba fácilmente que cumplen la ecuación inicial.
Hemos demostrado que las únicas soluciones son $x=2+\sqrt{2}$ y $x=2-\sqrt{2}$.
Nota. Si procedemos directamente simplificando la ecuación inicial y tenemos en cuenta que $x+1\neq 0$, llegamos a la ecuación de cuarto grado $x^4-6x^3+14x^2-20x+8=0$. Esta se puede factorizar sobre los enteros como producto de dos ecuaciones de segundo grado $(x^2-4x+2)(x^2-2x+4)=0$, de donde también se deduce la solución.