Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 830
Demuestra que $5555^{2222}+2222^{5555}$ es múltiplo de $7$.
pistasolución 1info
Pista. El enunciado equivale a que $4^{5555}+3^{2222}$ es múltiplo de $7$. Reduce módulo $7$ encontrando potencias de $4$ y $3$ que sean congruentes con $1$.
Solución. Comencemos con el segundo sumando. Como $2222\equiv 3\ (\text{mod }7)$, tenemos que $2222^{5555}\equiv 3^{5555}\ (\text{mod }7)$. Ahora bien, para simplificar el exponente que, trabajando módulo $7$, tenemos que $3^1\equiv 3$, $3^2\equiv 2$, $3^3\equiv 6$, $3^4\equiv 4$, $3^5\equiv 5$ y $3^6\equiv 1$. Hemos llegado a una potencia que es congruente con $1$. Ahora si dividimos $5555$ entre $6$ obtenemos que $5555=925\cdot 6+5$, luego \[2222^{5555}\equiv 3^{5555}=(3^6)^{925}\cdot 3^5\equiv 1^{925}\cdot 5\equiv 5\ (\text{mod }7).\]

De la misma manera, se comprueba que $5555\equiv 4\ (\text{mod }7)$, luego $5555^{222}\equiv 4^{2222}\ (\text{mod }7)$. Tenemos que $4^1\equiv 4$, $4^2\equiv 2$ y $4^3\equiv 1$ módulo $7$, y hacemos la división euclídea de $2222$ entre $3$, que nos da $2222=740\cdot 3+2$. Por tanto, \[5555^{2222}\equiv 4^{2222}=(4^3)^{740}\cdot 4^2\equiv 1^{740}\cdot 2\equiv 2\ (\text{mod }7).\] Esto nos da finalmente el resultado deseado: \[2222^{5555}+5555^{2222}\equiv 5+2\equiv 0\ (\text{mod }7).\]

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre