OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Nota. Una pregunta natural es si $30$ es el número óptimo y la respuesta es que sí. Se pueden encontrar formas de distribuir los $30$ comités de $5$ miembros con un solo miembro en la intersección de cada para de ellos. Una forma muy interesante de hacerlo es tomar cada miembro del club como uno puntos $(x,y)$ de coordenadas enteras entre $0$ y $4$ (un total de $25$ puntos). Cada comité estaría formado por los puntos que cumplen la condición $ax+by\equiv c\ (\text{mod }5)$, siendo $a,b\in\mathbb{Z}$ números enteros. ¿Sabrías probar que hay exactamente $30$ comités y dos cualesquiera de ellos tienen $0$ o $1$ elementos en común?