Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 838
Halla todas las ternas $(x,y,z)$ de números reales que son solución de la ecuación \[\sqrt{3^x(5^y+7^z)}+\sqrt{5^y(7^z+3^x)}+\sqrt{7^z(3^x+5^y)}=\sqrt{2}(3^x+5^y+7^z).\]
pistasolución 1info
Pista. Demuestra que la desigualdad $\leq$ es cierta para todo $x,y,z\in\mathbb{R}$ mediante la desigualdad de Cauchy-Schwarz.
Solución. Si aplicamos la desigualdad de Cauchy-Schwarz a los vectores \[u=\left(\sqrt{3^x},\sqrt{5^y},\sqrt{7^z}\right),\qquad v=\left(\sqrt{5^y+7^z},\sqrt{3^x+7^z},\sqrt{3^x+5^y}\right),\] obtenemos que \begin{align*} \sqrt{3^x(5^y+7^z)}+\sqrt{5^y(7^z+3^x)}+\sqrt{7^z(3^x+5^y)}&\leq\sqrt{3^x+5^y+7^z}\sqrt{(5^y+7^z)+(3^x+7^z)+(3^x+5^y)}\\ &=\sqrt{2}(3^x+5^y+7^z), \end{align*} donde hemos usado también que las exponenciales $3^x,5^7,7^z$ son números positivos. Esto nos dice que las soluciones de la ecuación son precisamente los valores que hacen de la desigualdad de Cauchy-Schwarz una igualdad. Esto equivale a que los vectores $u$ y $v$ sean proporcionales. Como están formados por números positivos, estamos buscando los $x,y,z$ tales que existe $\lambda\gt 0$ tal que \[\sqrt{3^x}=\lambda\sqrt{5^y+7^z},\qquad \sqrt{5^y}=\lambda\sqrt{3^x+7^z},\qquad \sqrt{7^z}=\lambda\sqrt{3^x+5^y}.\] Elevando al cuadrado y sumando los resultados, llegamos a que $3^x+5^y+7^z=2\lambda^2(3^x+5^y+7^z)$, luego debe ser $\lambda=\frac{1}{\sqrt{2}}$ ya que podemos cancelar $3^x+5^y+7^z\neq 0$ (recordemos que $\lambda$ es positivo). Por lo tanto, el sistema anterior nos queda \[3^x=\frac{5^y+7^z}{2},\qquad 5^y=\frac{3^x+7^z}{2},\qquad 7^z=\frac{3^x+5^y}{2}.\] Este es un sistema lineal en las incógnitas $3^x,5^y,7^z$, que es compatible indeterminado y sus soluciones son los números que verifican $3^x=5^y=7^z$. Tomando logaritmos, podemos reescribir esto como $x\log(3)=y\log(5)=z\log(7)$, luego las soluciones que buscamos pueden parametrizarse en términos de un parámetro real $a\in\mathbb{R}$ como \[(x,y,z)=\left(\frac{a}{\log(3)},\frac{a}{\log(5)},\frac{a}{\log(7)}\right).\]
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre