Solución. Probando con los sumandos más grandes posibles (para intentar minimizar el número de sumandos), llegamos a la siguiente descomposición:
\[2009=1111+777+99+22.\]
Si ahora trabajamos módulo $11$, observamos que los sumandos de dos y cuatro cifras son congruentes con $0$, mientras que los sumandos de tres cifras son congruentes con la cifra. Como $2009\equiv 7\ (\text{mod }11)$, las cifras de los números de tres cifras que usemos tienen que sumar $7$ o $18$ (si sumaran $25$ o más, nos pasaríamos ya que $25\cdot 111\gt 2009$). Si suman $18$, entonces tendríamos $18\cdot 111=1998$, que nos dejaría $9$ unidades de margen y no pueden obtenerse con otros sumandos puesto que no está permitido usar sumandos de una cifra. Tenemos así que $777$ tiene que ser el único sumando de tres cifras en cualquier descomposición que hagamos de $2009$ con el menor número de sumandos (ya que podríamos descomponer, por ejemplo, $777=444+333$). También tiene que ser necesariamente $1111$ otro sumando ya que no podemos obtener $2009-777=1232$ si sumamos solamente números de dos cifras distintos (tenemos que $11+22+\ldots+99=495\lt 1232$). Teniendo ahora en cuenta que $2009-777-1111=121$ tiene que expresarse como suma de (dos) números de dos cifras, obtenemos fácilmente las únicas cuatro descomposiciones que usan cuatro sumandos:
\begin{align*}
2009&=1111+777+99+22,&2009&=1111+777+88+33,\\
2009&=1111+777+77+44,&2009&=1111+777+66+55.
\end{align*}
Cualquier otra descomposición se obtiene reordenando sumandos o bien tienen al menos cinco sumandos.